MPC3
MATHEMATICS
Unit Pure Core 3

Thursday 17 January 20081.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when:
(i) $y=\left(2 x^{2}-5 x+1\right)^{20}$;
(2 marks)
(ii) $y=x \cos x$.
(b) Given that

$$
y=\frac{x^{3}}{x-2}
$$

show that

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{k x^{2}(x-3)}{(x-2)^{2}}
$$

where k is a positive integer.

2 (a) Solve the equation $\cot x=2$, giving all values of x in the interval $0 \leqslant x \leqslant 2 \pi$ in radians to two decimal places.
(b) Show that the equation $\operatorname{cosec}^{2} x=\frac{3 \cot x+4}{2}$ can be written as

$$
\begin{equation*}
2 \cot ^{2} x-3 \cot x-2=0 \tag{2marks}
\end{equation*}
$$

(c) Solve the equation $\operatorname{cosec}^{2} x=\frac{3 \cot x+4}{2}$, giving all values of x in the interval $0 \leqslant x \leqslant 2 \pi$ in radians to two decimal places.

3 The equation

$$
x+(1+3 x)^{\frac{1}{4}}=0
$$

has a single root, α.
(a) Show that α lies between -0.33 and -0.32 .
(b) Show that the equation $x+(1+3 x)^{\frac{1}{4}}=0$ can be rearranged into the form

$$
x=\frac{1}{3}\left(x^{4}-1\right)
$$

(c) Use the iteration $x_{n+1}=\frac{\left(x_{n}^{4}-1\right)}{3}$ with $x_{1}=-0.3$ to find x_{4}, giving your answer to three significant figures.

4 The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=x^{3}, & \text { for all real values of } x \\
\mathrm{~g}(x)=\frac{1}{x-3}, & \text { for real values of } x, x \neq 3
\end{array}
$$

(a) State the range of f .
(b) (i) Find $\mathrm{fg}(x)$.
(ii) Solve the equation $\operatorname{fg}(x)=64$.
(c) (i) The inverse of g is g^{-1}. Find $\mathrm{g}^{-1}(x)$.
(ii) State the range of g^{-1}.

5 (a) (i) Given that $y=2 x^{2}-8 x+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Hence, or otherwise, find

$$
\int_{4}^{6} \frac{x-2}{2 x^{2}-8 x+3} \mathrm{~d} x
$$

(b) Use the substitution $u=3 x-1$ to find $\int x \sqrt{3 x-1} \mathrm{~d} x$, giving your answer in terms of x.

6 (a) Sketch the curve with equation $y=\operatorname{cosec} x$ for $0<x<\pi$.
(b) Use the mid-ordinate rule with four strips to find an estimate for $\int_{0.1}^{0.5} \operatorname{cosec} x \mathrm{~d} x$, giving your answer to three significant figures.

7 (a) Describe a sequence of two geometrical transformations that maps the graph of $y=x^{2}$ onto the graph of $y=4 x^{2}-5$.
(b) Sketch the graph of $y=\left|4 x^{2}-5\right|$, indicating the coordinates of the point where the curve crosses the y-axis.
(c) (i) Solve the equation $\left|4 x^{2}-5\right|=4$.
(ii) Hence, or otherwise, solve the inequality $\left|4 x^{2}-5\right| \geqslant 4$.

8 (a) Given that $\mathrm{e}^{-2 x}=3$, find the exact value of x.
(b) Use integration by parts to find $\int x \mathrm{e}^{-2 x} \mathrm{~d} x$.
(c) A curve has equation $y=\mathrm{e}^{-2 x}+6 x$.
(i) Find the exact values of the coordinates of the stationary point of the curve.
(4 marks)
(ii) Determine the nature of the stationary point.
(iii) The region R is bounded by the curve $y=\mathrm{e}^{-2 x}+6 x$, the x-axis and the lines $x=0$ and $x=1$.

Find the volume of the solid formed when R is rotated through 2π radians about the x-axis, giving your answer to three significant figures.

END OF QUESTIONS

